Reliable quantum state tomography.
نویسندگان
چکیده
Quantum state tomography is the task of inferring the state of a quantum system by appropriate measurements. Since the frequency distributions of the outcomes of any finite number of measurements will generally deviate from their asymptotic limits, the estimates computed by standard methods do not in general coincide with the true state and, therefore, have no operational significance unless their accuracy is defined in terms of error bounds. Here we show that quantum state tomography, together with an appropriate data analysis procedure, yields reliable and tight error bounds, specified in terms of confidence regions-a concept originating from classical statistics. Confidence regions are subsets of the state space in which the true state lies with high probability, independently of any prior assumption on the distribution of the possible states. Our method for computing confidence regions can be applied to arbitrary measurements including fully coherent ones; it is practical and particularly well suited for tomography on systems consisting of a small number of qubits, which are currently in the focus of interest in experimental quantum information science.
منابع مشابه
Systematic errors in current quantum state tomography tools.
Common tools for obtaining physical density matrices in experimental quantum state tomography are shown here to cause systematic errors. For example, using maximum likelihood or least squares optimization to obtain physical estimates for the quantum state, we observe a systematic underestimation of the fidelity and an overestimation of entanglement. Such strongly biased estimates can be avoided...
متن کاملSampling of the Wigner function adapted to time-multiplexed detection of photon statistics
We investigate the capabilities of loss-tolerant quantum state characterisation based on photon-number resolving detectors. Our emphasis lies on constructing the Wigner function of non-Gaussian Fock states with highly non-classical negative values around the origin of the phase space. We employ the idea of sampling the Wigner function point by point via photon parity measurements instead of usi...
متن کاملCurrent state of bone scintigraphy protocols and practice in Japan
Objective(s): Nuclear medicine technologists in Japan often perform additional single-photon emission computed tomography (SPECT) with or without computed tomography (CT) after whole-body imaging for bone scintigraphy. In this study, we wanted to identify the bone scanning protocols used in Japan, together with the current clinical practices. Methods:...
متن کاملExperimental quantum compressed sensing for a seven-qubit system
Well-controlled quantum devices with their increasing system size face a new roadblock hindering further development of quantum technologies. The effort of quantum tomography-the reconstruction of states and processes of a quantum device-scales unfavourably: state-of-the-art systems can no longer be characterized. Quantum compressed sensing mitigates this problem by reconstructing states from i...
متن کاملContinuous-variable optical quantum state tomography
This review covers latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special accent on its practical aspects and applications in quantum information technology. Optical homodyne tomography is reviewed as a method of reconstructing the state of light in a given optical mode. A range of relevant practical topics are discussed, such as sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 109 12 شماره
صفحات -
تاریخ انتشار 2012